Metadata-Version: 2.1 Name: bcrypt Version: 3.1.6 Summary: Modern password hashing for your software and your servers Home-page: https://github.com/pyca/bcrypt/ Author: The Python Cryptographic Authority developers Author-email: cryptography-dev@python.org License: Apache License, Version 2.0 Platform: UNKNOWN Classifier: Development Status :: 5 - Production/Stable Classifier: License :: OSI Approved :: Apache Software License Classifier: Programming Language :: Python :: Implementation :: CPython Classifier: Programming Language :: Python :: Implementation :: PyPy Classifier: Programming Language :: Python :: 2 Classifier: Programming Language :: Python :: 2.7 Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: Python :: 3.4 Classifier: Programming Language :: Python :: 3.5 Classifier: Programming Language :: Python :: 3.6 Classifier: Programming Language :: Python :: 3.7 Requires-Python: >=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.* Requires-Dist: cffi (>=1.1) Requires-Dist: six (>=1.4.1) Provides-Extra: tests Requires-Dist: pytest (!=3.3.0,>=3.2.1) ; extra == 'tests' bcrypt ====== .. image:: https://img.shields.io/pypi/v/bcrypt.svg :target: https://pypi.org/project/bcrypt/ :alt: Latest Version .. image:: https://travis-ci.org/pyca/bcrypt.svg?branch=master :target: https://travis-ci.org/pyca/bcrypt Good password hashing for your software and your servers Installation ============ To install bcrypt, simply: .. code:: bash $ pip install bcrypt Note that bcrypt should build very easily on Linux provided you have a C compiler, headers for Python (if you're not using pypy), and headers for the libffi libraries available on your system. For Debian and Ubuntu, the following command will ensure that the required dependencies are installed: .. code:: bash $ sudo apt-get install build-essential libffi-dev python-dev For Fedora and RHEL-derivatives, the following command will ensure that the required dependencies are installed: .. code:: bash $ sudo yum install gcc libffi-devel python-devel Alternatives ============ While bcrypt remains a good choice for password storage depending on your specific use case you may also want to consider using scrypt (either via `standard library`_ or `cryptography`_) or argon2id via `argon2_cffi`_. Changelog ========= 3.1.6 ----- * Added support for compilation on Haiku. 3.1.5 ----- * Added support for compilation on AIX. * Dropped Python 2.6 and 3.3 support. * Switched to using ``abi3`` wheels for Python 3. If you are not getting a wheel on a compatible platform please upgrade your ``pip`` version. 3.1.4 ----- * Fixed compilation with mingw and on illumos. 3.1.3 ----- * Fixed a compilation issue on Solaris. * Added a warning when using too few rounds with ``kdf``. 3.1.2 ----- * Fixed a compile issue affecting big endian platforms. * Fixed invalid escape sequence warnings on Python 3.6. * Fixed building in non-UTF8 environments on Python 2. 3.1.1 ----- * Resolved a ``UserWarning`` when used with ``cffi`` 1.8.3. 3.1.0 ----- * Added support for ``checkpw``, a convenience method for verifying a password. * Ensure that you get a ``$2y$`` hash when you input a ``$2y$`` salt. * Fixed a regression where ``$2a`` hashes were vulnerable to a wraparound bug. * Fixed compilation under Alpine Linux. 3.0.0 ----- * Switched the C backend to code obtained from the OpenBSD project rather than openwall. * Added support for ``bcrypt_pbkdf`` via the ``kdf`` function. 2.0.0 ----- * Added support for an adjustible prefix when calling ``gensalt``. * Switched to CFFI 1.0+ Usage ----- Password Hashing ~~~~~~~~~~~~~~~~ Hashing and then later checking that a password matches the previous hashed password is very simple: .. code:: pycon >>> import bcrypt >>> password = b"super secret password" >>> # Hash a password for the first time, with a randomly-generated salt >>> hashed = bcrypt.hashpw(password, bcrypt.gensalt()) >>> # Check that an unhashed password matches one that has previously been >>> # hashed >>> if bcrypt.checkpw(password, hashed): ... print("It Matches!") ... else: ... print("It Does not Match :(") KDF ~~~ As of 3.0.0 ``bcrypt`` now offers a ``kdf`` function which does ``bcrypt_pbkdf``. This KDF is used in OpenSSH's newer encrypted private key format. .. code:: pycon >>> import bcrypt >>> key = bcrypt.kdf( ... password=b'password', ... salt=b'salt', ... desired_key_bytes=32, ... rounds=100) Adjustable Work Factor ~~~~~~~~~~~~~~~~~~~~~~ One of bcrypt's features is an adjustable logarithmic work factor. To adjust the work factor merely pass the desired number of rounds to ``bcrypt.gensalt(rounds=12)`` which defaults to 12): .. code:: pycon >>> import bcrypt >>> password = b"super secret password" >>> # Hash a password for the first time, with a certain number of rounds >>> hashed = bcrypt.hashpw(password, bcrypt.gensalt(14)) >>> # Check that a unhashed password matches one that has previously been >>> # hashed >>> if bcrypt.checkpw(password, hashed): ... print("It Matches!") ... else: ... print("It Does not Match :(") Adjustable Prefix ~~~~~~~~~~~~~~~~~ Another one of bcrypt's features is an adjustable prefix to let you define what libraries you'll remain compatible with. To adjust this, pass either ``2a`` or ``2b`` (the default) to ``bcrypt.gensalt(prefix=b"2b")`` as a bytes object. As of 3.0.0 the ``$2y$`` prefix is still supported in ``hashpw`` but deprecated. Maximum Password Length ~~~~~~~~~~~~~~~~~~~~~~~ The bcrypt algorithm only handles passwords up to 72 characters, any characters beyond that are ignored. To work around this, a common approach is to hash a password with a cryptographic hash (such as ``sha256``) and then base64 encode it to prevent NULL byte problems before hashing the result with ``bcrypt``: .. code:: pycon >>> password = b"an incredibly long password" * 10 >>> hashed = bcrypt.hashpw( ... base64.b64encode(hashlib.sha256(password).digest()), ... bcrypt.gensalt() ... ) Compatibility ------------- This library should be compatible with py-bcrypt and it will run on Python 2.7, 3.4+, and PyPy 2.6+. C Code ------ This library uses code from OpenBSD. Security -------- ``bcrypt`` follows the `same security policy as cryptography`_, if you identify a vulnerability, we ask you to contact us privately. .. _`same security policy as cryptography`: https://cryptography.io/en/latest/security/ .. _`standard library`: https://docs.python.org/3/library/hashlib.html#hashlib.scrypt .. _`argon2_cffi`: https://argon2-cffi.readthedocs.io .. _`cryptography`: https://cryptography.io/en/latest/hazmat/primitives/key-derivation-functions/#cryptography.hazmat.primitives.kdf.scrypt.Scrypt