mirror of
https://github.com/thegeeklab/ansible-later.git
synced 2024-11-26 23:00:36 +00:00
155 lines
5.3 KiB
Python
155 lines
5.3 KiB
Python
|
# This file is dual licensed under the terms of the Apache License, Version
|
||
|
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
||
|
# for complete details.
|
||
|
|
||
|
from __future__ import absolute_import, division, print_function
|
||
|
|
||
|
import struct
|
||
|
|
||
|
from cryptography.hazmat.primitives.ciphers import Cipher
|
||
|
from cryptography.hazmat.primitives.ciphers.algorithms import AES
|
||
|
from cryptography.hazmat.primitives.ciphers.modes import ECB
|
||
|
from cryptography.hazmat.primitives.constant_time import bytes_eq
|
||
|
|
||
|
|
||
|
def _wrap_core(wrapping_key, a, r, backend):
|
||
|
# RFC 3394 Key Wrap - 2.2.1 (index method)
|
||
|
encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
|
||
|
n = len(r)
|
||
|
for j in range(6):
|
||
|
for i in range(n):
|
||
|
# every encryption operation is a discrete 16 byte chunk (because
|
||
|
# AES has a 128-bit block size) and since we're using ECB it is
|
||
|
# safe to reuse the encryptor for the entire operation
|
||
|
b = encryptor.update(a + r[i])
|
||
|
# pack/unpack are safe as these are always 64-bit chunks
|
||
|
a = struct.pack(
|
||
|
">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
|
||
|
)
|
||
|
r[i] = b[-8:]
|
||
|
|
||
|
assert encryptor.finalize() == b""
|
||
|
|
||
|
return a + b"".join(r)
|
||
|
|
||
|
|
||
|
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
|
||
|
if len(wrapping_key) not in [16, 24, 32]:
|
||
|
raise ValueError("The wrapping key must be a valid AES key length")
|
||
|
|
||
|
if len(key_to_wrap) < 16:
|
||
|
raise ValueError("The key to wrap must be at least 16 bytes")
|
||
|
|
||
|
if len(key_to_wrap) % 8 != 0:
|
||
|
raise ValueError("The key to wrap must be a multiple of 8 bytes")
|
||
|
|
||
|
a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
|
||
|
r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
|
||
|
return _wrap_core(wrapping_key, a, r, backend)
|
||
|
|
||
|
|
||
|
def _unwrap_core(wrapping_key, a, r, backend):
|
||
|
# Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
|
||
|
decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
|
||
|
n = len(r)
|
||
|
for j in reversed(range(6)):
|
||
|
for i in reversed(range(n)):
|
||
|
# pack/unpack are safe as these are always 64-bit chunks
|
||
|
atr = struct.pack(
|
||
|
">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
|
||
|
) + r[i]
|
||
|
# every decryption operation is a discrete 16 byte chunk so
|
||
|
# it is safe to reuse the decryptor for the entire operation
|
||
|
b = decryptor.update(atr)
|
||
|
a = b[:8]
|
||
|
r[i] = b[-8:]
|
||
|
|
||
|
assert decryptor.finalize() == b""
|
||
|
return a, r
|
||
|
|
||
|
|
||
|
def aes_key_wrap_with_padding(wrapping_key, key_to_wrap, backend):
|
||
|
if len(wrapping_key) not in [16, 24, 32]:
|
||
|
raise ValueError("The wrapping key must be a valid AES key length")
|
||
|
|
||
|
aiv = b"\xA6\x59\x59\xA6" + struct.pack(">i", len(key_to_wrap))
|
||
|
# pad the key to wrap if necessary
|
||
|
pad = (8 - (len(key_to_wrap) % 8)) % 8
|
||
|
key_to_wrap = key_to_wrap + b"\x00" * pad
|
||
|
if len(key_to_wrap) == 8:
|
||
|
# RFC 5649 - 4.1 - exactly 8 octets after padding
|
||
|
encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
|
||
|
b = encryptor.update(aiv + key_to_wrap)
|
||
|
assert encryptor.finalize() == b""
|
||
|
return b
|
||
|
else:
|
||
|
r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
|
||
|
return _wrap_core(wrapping_key, aiv, r, backend)
|
||
|
|
||
|
|
||
|
def aes_key_unwrap_with_padding(wrapping_key, wrapped_key, backend):
|
||
|
if len(wrapped_key) < 16:
|
||
|
raise InvalidUnwrap("Must be at least 16 bytes")
|
||
|
|
||
|
if len(wrapping_key) not in [16, 24, 32]:
|
||
|
raise ValueError("The wrapping key must be a valid AES key length")
|
||
|
|
||
|
if len(wrapped_key) == 16:
|
||
|
# RFC 5649 - 4.2 - exactly two 64-bit blocks
|
||
|
decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
|
||
|
b = decryptor.update(wrapped_key)
|
||
|
assert decryptor.finalize() == b""
|
||
|
a = b[:8]
|
||
|
data = b[8:]
|
||
|
n = 1
|
||
|
else:
|
||
|
r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
|
||
|
encrypted_aiv = r.pop(0)
|
||
|
n = len(r)
|
||
|
a, r = _unwrap_core(wrapping_key, encrypted_aiv, r, backend)
|
||
|
data = b"".join(r)
|
||
|
|
||
|
# 1) Check that MSB(32,A) = A65959A6.
|
||
|
# 2) Check that 8*(n-1) < LSB(32,A) <= 8*n. If so, let
|
||
|
# MLI = LSB(32,A).
|
||
|
# 3) Let b = (8*n)-MLI, and then check that the rightmost b octets of
|
||
|
# the output data are zero.
|
||
|
(mli,) = struct.unpack(">I", a[4:])
|
||
|
b = (8 * n) - mli
|
||
|
if (
|
||
|
not bytes_eq(a[:4], b"\xa6\x59\x59\xa6") or not
|
||
|
8 * (n - 1) < mli <= 8 * n or (
|
||
|
b != 0 and not bytes_eq(data[-b:], b"\x00" * b)
|
||
|
)
|
||
|
):
|
||
|
raise InvalidUnwrap()
|
||
|
|
||
|
if b == 0:
|
||
|
return data
|
||
|
else:
|
||
|
return data[:-b]
|
||
|
|
||
|
|
||
|
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
|
||
|
if len(wrapped_key) < 24:
|
||
|
raise InvalidUnwrap("Must be at least 24 bytes")
|
||
|
|
||
|
if len(wrapped_key) % 8 != 0:
|
||
|
raise InvalidUnwrap("The wrapped key must be a multiple of 8 bytes")
|
||
|
|
||
|
if len(wrapping_key) not in [16, 24, 32]:
|
||
|
raise ValueError("The wrapping key must be a valid AES key length")
|
||
|
|
||
|
aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
|
||
|
r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
|
||
|
a = r.pop(0)
|
||
|
a, r = _unwrap_core(wrapping_key, a, r, backend)
|
||
|
if not bytes_eq(a, aiv):
|
||
|
raise InvalidUnwrap()
|
||
|
|
||
|
return b"".join(r)
|
||
|
|
||
|
|
||
|
class InvalidUnwrap(Exception):
|
||
|
pass
|