mirror of
https://github.com/thegeeklab/ansible-later.git
synced 2024-11-13 00:30:39 +00:00
369 lines
10 KiB
Python
369 lines
10 KiB
Python
# This file is dual licensed under the terms of the Apache License, Version
|
|
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
|
# for complete details.
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
import abc
|
|
try:
|
|
# Only available in math in 3.5+
|
|
from math import gcd
|
|
except ImportError:
|
|
from fractions import gcd
|
|
|
|
import six
|
|
|
|
from cryptography import utils
|
|
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
|
|
from cryptography.hazmat.backends.interfaces import RSABackend
|
|
|
|
|
|
@six.add_metaclass(abc.ABCMeta)
|
|
class RSAPrivateKey(object):
|
|
@abc.abstractmethod
|
|
def signer(self, padding, algorithm):
|
|
"""
|
|
Returns an AsymmetricSignatureContext used for signing data.
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def decrypt(self, ciphertext, padding):
|
|
"""
|
|
Decrypts the provided ciphertext.
|
|
"""
|
|
|
|
@abc.abstractproperty
|
|
def key_size(self):
|
|
"""
|
|
The bit length of the public modulus.
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def public_key(self):
|
|
"""
|
|
The RSAPublicKey associated with this private key.
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def sign(self, data, padding, algorithm):
|
|
"""
|
|
Signs the data.
|
|
"""
|
|
|
|
|
|
@six.add_metaclass(abc.ABCMeta)
|
|
class RSAPrivateKeyWithSerialization(RSAPrivateKey):
|
|
@abc.abstractmethod
|
|
def private_numbers(self):
|
|
"""
|
|
Returns an RSAPrivateNumbers.
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def private_bytes(self, encoding, format, encryption_algorithm):
|
|
"""
|
|
Returns the key serialized as bytes.
|
|
"""
|
|
|
|
|
|
@six.add_metaclass(abc.ABCMeta)
|
|
class RSAPublicKey(object):
|
|
@abc.abstractmethod
|
|
def verifier(self, signature, padding, algorithm):
|
|
"""
|
|
Returns an AsymmetricVerificationContext used for verifying signatures.
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def encrypt(self, plaintext, padding):
|
|
"""
|
|
Encrypts the given plaintext.
|
|
"""
|
|
|
|
@abc.abstractproperty
|
|
def key_size(self):
|
|
"""
|
|
The bit length of the public modulus.
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def public_numbers(self):
|
|
"""
|
|
Returns an RSAPublicNumbers
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def public_bytes(self, encoding, format):
|
|
"""
|
|
Returns the key serialized as bytes.
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def verify(self, signature, data, padding, algorithm):
|
|
"""
|
|
Verifies the signature of the data.
|
|
"""
|
|
|
|
|
|
RSAPublicKeyWithSerialization = RSAPublicKey
|
|
|
|
|
|
def generate_private_key(public_exponent, key_size, backend):
|
|
if not isinstance(backend, RSABackend):
|
|
raise UnsupportedAlgorithm(
|
|
"Backend object does not implement RSABackend.",
|
|
_Reasons.BACKEND_MISSING_INTERFACE
|
|
)
|
|
|
|
_verify_rsa_parameters(public_exponent, key_size)
|
|
return backend.generate_rsa_private_key(public_exponent, key_size)
|
|
|
|
|
|
def _verify_rsa_parameters(public_exponent, key_size):
|
|
if public_exponent < 3:
|
|
raise ValueError("public_exponent must be >= 3.")
|
|
|
|
if public_exponent & 1 == 0:
|
|
raise ValueError("public_exponent must be odd.")
|
|
|
|
if key_size < 512:
|
|
raise ValueError("key_size must be at least 512-bits.")
|
|
|
|
|
|
def _check_private_key_components(p, q, private_exponent, dmp1, dmq1, iqmp,
|
|
public_exponent, modulus):
|
|
if modulus < 3:
|
|
raise ValueError("modulus must be >= 3.")
|
|
|
|
if p >= modulus:
|
|
raise ValueError("p must be < modulus.")
|
|
|
|
if q >= modulus:
|
|
raise ValueError("q must be < modulus.")
|
|
|
|
if dmp1 >= modulus:
|
|
raise ValueError("dmp1 must be < modulus.")
|
|
|
|
if dmq1 >= modulus:
|
|
raise ValueError("dmq1 must be < modulus.")
|
|
|
|
if iqmp >= modulus:
|
|
raise ValueError("iqmp must be < modulus.")
|
|
|
|
if private_exponent >= modulus:
|
|
raise ValueError("private_exponent must be < modulus.")
|
|
|
|
if public_exponent < 3 or public_exponent >= modulus:
|
|
raise ValueError("public_exponent must be >= 3 and < modulus.")
|
|
|
|
if public_exponent & 1 == 0:
|
|
raise ValueError("public_exponent must be odd.")
|
|
|
|
if dmp1 & 1 == 0:
|
|
raise ValueError("dmp1 must be odd.")
|
|
|
|
if dmq1 & 1 == 0:
|
|
raise ValueError("dmq1 must be odd.")
|
|
|
|
if p * q != modulus:
|
|
raise ValueError("p*q must equal modulus.")
|
|
|
|
|
|
def _check_public_key_components(e, n):
|
|
if n < 3:
|
|
raise ValueError("n must be >= 3.")
|
|
|
|
if e < 3 or e >= n:
|
|
raise ValueError("e must be >= 3 and < n.")
|
|
|
|
if e & 1 == 0:
|
|
raise ValueError("e must be odd.")
|
|
|
|
|
|
def _modinv(e, m):
|
|
"""
|
|
Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
|
|
"""
|
|
x1, y1, x2, y2 = 1, 0, 0, 1
|
|
a, b = e, m
|
|
while b > 0:
|
|
q, r = divmod(a, b)
|
|
xn, yn = x1 - q * x2, y1 - q * y2
|
|
a, b, x1, y1, x2, y2 = b, r, x2, y2, xn, yn
|
|
return x1 % m
|
|
|
|
|
|
def rsa_crt_iqmp(p, q):
|
|
"""
|
|
Compute the CRT (q ** -1) % p value from RSA primes p and q.
|
|
"""
|
|
return _modinv(q, p)
|
|
|
|
|
|
def rsa_crt_dmp1(private_exponent, p):
|
|
"""
|
|
Compute the CRT private_exponent % (p - 1) value from the RSA
|
|
private_exponent (d) and p.
|
|
"""
|
|
return private_exponent % (p - 1)
|
|
|
|
|
|
def rsa_crt_dmq1(private_exponent, q):
|
|
"""
|
|
Compute the CRT private_exponent % (q - 1) value from the RSA
|
|
private_exponent (d) and q.
|
|
"""
|
|
return private_exponent % (q - 1)
|
|
|
|
|
|
# Controls the number of iterations rsa_recover_prime_factors will perform
|
|
# to obtain the prime factors. Each iteration increments by 2 so the actual
|
|
# maximum attempts is half this number.
|
|
_MAX_RECOVERY_ATTEMPTS = 1000
|
|
|
|
|
|
def rsa_recover_prime_factors(n, e, d):
|
|
"""
|
|
Compute factors p and q from the private exponent d. We assume that n has
|
|
no more than two factors. This function is adapted from code in PyCrypto.
|
|
"""
|
|
# See 8.2.2(i) in Handbook of Applied Cryptography.
|
|
ktot = d * e - 1
|
|
# The quantity d*e-1 is a multiple of phi(n), even,
|
|
# and can be represented as t*2^s.
|
|
t = ktot
|
|
while t % 2 == 0:
|
|
t = t // 2
|
|
# Cycle through all multiplicative inverses in Zn.
|
|
# The algorithm is non-deterministic, but there is a 50% chance
|
|
# any candidate a leads to successful factoring.
|
|
# See "Digitalized Signatures and Public Key Functions as Intractable
|
|
# as Factorization", M. Rabin, 1979
|
|
spotted = False
|
|
a = 2
|
|
while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
|
|
k = t
|
|
# Cycle through all values a^{t*2^i}=a^k
|
|
while k < ktot:
|
|
cand = pow(a, k, n)
|
|
# Check if a^k is a non-trivial root of unity (mod n)
|
|
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
|
|
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
|
|
# Either of the terms divides n.
|
|
p = gcd(cand + 1, n)
|
|
spotted = True
|
|
break
|
|
k *= 2
|
|
# This value was not any good... let's try another!
|
|
a += 2
|
|
if not spotted:
|
|
raise ValueError("Unable to compute factors p and q from exponent d.")
|
|
# Found !
|
|
q, r = divmod(n, p)
|
|
assert r == 0
|
|
p, q = sorted((p, q), reverse=True)
|
|
return (p, q)
|
|
|
|
|
|
class RSAPrivateNumbers(object):
|
|
def __init__(self, p, q, d, dmp1, dmq1, iqmp,
|
|
public_numbers):
|
|
if (
|
|
not isinstance(p, six.integer_types) or
|
|
not isinstance(q, six.integer_types) or
|
|
not isinstance(d, six.integer_types) or
|
|
not isinstance(dmp1, six.integer_types) or
|
|
not isinstance(dmq1, six.integer_types) or
|
|
not isinstance(iqmp, six.integer_types)
|
|
):
|
|
raise TypeError(
|
|
"RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must"
|
|
" all be an integers."
|
|
)
|
|
|
|
if not isinstance(public_numbers, RSAPublicNumbers):
|
|
raise TypeError(
|
|
"RSAPrivateNumbers public_numbers must be an RSAPublicNumbers"
|
|
" instance."
|
|
)
|
|
|
|
self._p = p
|
|
self._q = q
|
|
self._d = d
|
|
self._dmp1 = dmp1
|
|
self._dmq1 = dmq1
|
|
self._iqmp = iqmp
|
|
self._public_numbers = public_numbers
|
|
|
|
p = utils.read_only_property("_p")
|
|
q = utils.read_only_property("_q")
|
|
d = utils.read_only_property("_d")
|
|
dmp1 = utils.read_only_property("_dmp1")
|
|
dmq1 = utils.read_only_property("_dmq1")
|
|
iqmp = utils.read_only_property("_iqmp")
|
|
public_numbers = utils.read_only_property("_public_numbers")
|
|
|
|
def private_key(self, backend):
|
|
return backend.load_rsa_private_numbers(self)
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, RSAPrivateNumbers):
|
|
return NotImplemented
|
|
|
|
return (
|
|
self.p == other.p and
|
|
self.q == other.q and
|
|
self.d == other.d and
|
|
self.dmp1 == other.dmp1 and
|
|
self.dmq1 == other.dmq1 and
|
|
self.iqmp == other.iqmp and
|
|
self.public_numbers == other.public_numbers
|
|
)
|
|
|
|
def __ne__(self, other):
|
|
return not self == other
|
|
|
|
def __hash__(self):
|
|
return hash((
|
|
self.p,
|
|
self.q,
|
|
self.d,
|
|
self.dmp1,
|
|
self.dmq1,
|
|
self.iqmp,
|
|
self.public_numbers,
|
|
))
|
|
|
|
|
|
class RSAPublicNumbers(object):
|
|
def __init__(self, e, n):
|
|
if (
|
|
not isinstance(e, six.integer_types) or
|
|
not isinstance(n, six.integer_types)
|
|
):
|
|
raise TypeError("RSAPublicNumbers arguments must be integers.")
|
|
|
|
self._e = e
|
|
self._n = n
|
|
|
|
e = utils.read_only_property("_e")
|
|
n = utils.read_only_property("_n")
|
|
|
|
def public_key(self, backend):
|
|
return backend.load_rsa_public_numbers(self)
|
|
|
|
def __repr__(self):
|
|
return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self)
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, RSAPublicNumbers):
|
|
return NotImplemented
|
|
|
|
return self.e == other.e and self.n == other.n
|
|
|
|
def __ne__(self, other):
|
|
return not self == other
|
|
|
|
def __hash__(self):
|
|
return hash((self.e, self.n))
|