mirror of
https://github.com/thegeeklab/ansible-later.git
synced 2024-11-14 09:10:39 +00:00
714 lines
22 KiB
Python
714 lines
22 KiB
Python
from abc import abstractmethod, ABCMeta
|
|
from ._compat import Sequence, Hashable
|
|
from numbers import Integral
|
|
import operator
|
|
import six
|
|
from pyrsistent._transformations import transform
|
|
|
|
|
|
def _bitcount(val):
|
|
return bin(val).count("1")
|
|
|
|
BRANCH_FACTOR = 32
|
|
BIT_MASK = BRANCH_FACTOR - 1
|
|
SHIFT = _bitcount(BIT_MASK)
|
|
|
|
|
|
def compare_pvector(v, other, operator):
|
|
return operator(v.tolist(), other.tolist() if isinstance(other, PVector) else other)
|
|
|
|
|
|
def _index_or_slice(index, stop):
|
|
if stop is None:
|
|
return index
|
|
|
|
return slice(index, stop)
|
|
|
|
|
|
class PythonPVector(object):
|
|
"""
|
|
Support structure for PVector that implements structural sharing for vectors using a trie.
|
|
"""
|
|
__slots__ = ('_count', '_shift', '_root', '_tail', '_tail_offset', '__weakref__')
|
|
|
|
def __new__(cls, count, shift, root, tail):
|
|
self = super(PythonPVector, cls).__new__(cls)
|
|
self._count = count
|
|
self._shift = shift
|
|
self._root = root
|
|
self._tail = tail
|
|
|
|
# Derived attribute stored for performance
|
|
self._tail_offset = self._count - len(self._tail)
|
|
return self
|
|
|
|
def __len__(self):
|
|
return self._count
|
|
|
|
def __getitem__(self, index):
|
|
if isinstance(index, slice):
|
|
# There are more conditions than the below where it would be OK to
|
|
# return ourselves, implement those...
|
|
if index.start is None and index.stop is None and index.step is None:
|
|
return self
|
|
|
|
# This is a bit nasty realizing the whole structure as a list before
|
|
# slicing it but it is the fastest way I've found to date, and it's easy :-)
|
|
return _EMPTY_PVECTOR.extend(self.tolist()[index])
|
|
|
|
if index < 0:
|
|
index += self._count
|
|
|
|
return PythonPVector._node_for(self, index)[index & BIT_MASK]
|
|
|
|
def __add__(self, other):
|
|
return self.extend(other)
|
|
|
|
def __repr__(self):
|
|
return 'pvector({0})'.format(str(self.tolist()))
|
|
|
|
def __str__(self):
|
|
return self.__repr__()
|
|
|
|
def __iter__(self):
|
|
# This is kind of lazy and will produce some memory overhead but it is the fasted method
|
|
# by far of those tried since it uses the speed of the built in python list directly.
|
|
return iter(self.tolist())
|
|
|
|
def __ne__(self, other):
|
|
return self._count != len(other) or compare_pvector(self, other, operator.ne)
|
|
|
|
def __eq__(self, other):
|
|
return self is other or self._count == len(other) and compare_pvector(self, other, operator.eq)
|
|
|
|
def __gt__(self, other):
|
|
return compare_pvector(self, other, operator.gt)
|
|
|
|
def __lt__(self, other):
|
|
return compare_pvector(self, other, operator.lt)
|
|
|
|
def __ge__(self, other):
|
|
return compare_pvector(self, other, operator.ge)
|
|
|
|
def __le__(self, other):
|
|
return compare_pvector(self, other, operator.le)
|
|
|
|
def __mul__(self, times):
|
|
if times <= 0 or self is _EMPTY_PVECTOR:
|
|
return _EMPTY_PVECTOR
|
|
|
|
if times == 1:
|
|
return self
|
|
|
|
return _EMPTY_PVECTOR.extend(times * self.tolist())
|
|
|
|
__rmul__ = __mul__
|
|
|
|
def _fill_list(self, node, shift, the_list):
|
|
if shift:
|
|
shift -= SHIFT
|
|
for n in node:
|
|
self._fill_list(n, shift, the_list)
|
|
else:
|
|
the_list.extend(node)
|
|
|
|
def tolist(self):
|
|
"""
|
|
The fastest way to convert the vector into a python list.
|
|
"""
|
|
the_list = []
|
|
self._fill_list(self._root, self._shift, the_list)
|
|
the_list.extend(self._tail)
|
|
return the_list
|
|
|
|
def _totuple(self):
|
|
"""
|
|
Returns the content as a python tuple.
|
|
"""
|
|
return tuple(self.tolist())
|
|
|
|
def __hash__(self):
|
|
# Taking the easy way out again...
|
|
return hash(self._totuple())
|
|
|
|
def transform(self, *transformations):
|
|
return transform(self, transformations)
|
|
|
|
def __reduce__(self):
|
|
# Pickling support
|
|
return pvector, (self.tolist(),)
|
|
|
|
def mset(self, *args):
|
|
if len(args) % 2:
|
|
raise TypeError("mset expected an even number of arguments")
|
|
|
|
evolver = self.evolver()
|
|
for i in range(0, len(args), 2):
|
|
evolver[args[i]] = args[i+1]
|
|
|
|
return evolver.persistent()
|
|
|
|
class Evolver(object):
|
|
__slots__ = ('_count', '_shift', '_root', '_tail', '_tail_offset', '_dirty_nodes',
|
|
'_extra_tail', '_cached_leafs', '_orig_pvector')
|
|
|
|
def __init__(self, v):
|
|
self._reset(v)
|
|
|
|
def __getitem__(self, index):
|
|
if not isinstance(index, Integral):
|
|
raise TypeError("'%s' object cannot be interpreted as an index" % type(index).__name__)
|
|
|
|
if index < 0:
|
|
index += self._count + len(self._extra_tail)
|
|
|
|
if self._count <= index < self._count + len(self._extra_tail):
|
|
return self._extra_tail[index - self._count]
|
|
|
|
return PythonPVector._node_for(self, index)[index & BIT_MASK]
|
|
|
|
def _reset(self, v):
|
|
self._count = v._count
|
|
self._shift = v._shift
|
|
self._root = v._root
|
|
self._tail = v._tail
|
|
self._tail_offset = v._tail_offset
|
|
self._dirty_nodes = {}
|
|
self._cached_leafs = {}
|
|
self._extra_tail = []
|
|
self._orig_pvector = v
|
|
|
|
def append(self, element):
|
|
self._extra_tail.append(element)
|
|
return self
|
|
|
|
def extend(self, iterable):
|
|
self._extra_tail.extend(iterable)
|
|
return self
|
|
|
|
def set(self, index, val):
|
|
self[index] = val
|
|
return self
|
|
|
|
def __setitem__(self, index, val):
|
|
if not isinstance(index, Integral):
|
|
raise TypeError("'%s' object cannot be interpreted as an index" % type(index).__name__)
|
|
|
|
if index < 0:
|
|
index += self._count + len(self._extra_tail)
|
|
|
|
if 0 <= index < self._count:
|
|
node = self._cached_leafs.get(index >> SHIFT)
|
|
if node:
|
|
node[index & BIT_MASK] = val
|
|
elif index >= self._tail_offset:
|
|
if id(self._tail) not in self._dirty_nodes:
|
|
self._tail = list(self._tail)
|
|
self._dirty_nodes[id(self._tail)] = True
|
|
self._cached_leafs[index >> SHIFT] = self._tail
|
|
self._tail[index & BIT_MASK] = val
|
|
else:
|
|
self._root = self._do_set(self._shift, self._root, index, val)
|
|
elif self._count <= index < self._count + len(self._extra_tail):
|
|
self._extra_tail[index - self._count] = val
|
|
elif index == self._count + len(self._extra_tail):
|
|
self._extra_tail.append(val)
|
|
else:
|
|
raise IndexError("Index out of range: %s" % (index,))
|
|
|
|
def _do_set(self, level, node, i, val):
|
|
if id(node) in self._dirty_nodes:
|
|
ret = node
|
|
else:
|
|
ret = list(node)
|
|
self._dirty_nodes[id(ret)] = True
|
|
|
|
if level == 0:
|
|
ret[i & BIT_MASK] = val
|
|
self._cached_leafs[i >> SHIFT] = ret
|
|
else:
|
|
sub_index = (i >> level) & BIT_MASK # >>>
|
|
ret[sub_index] = self._do_set(level - SHIFT, node[sub_index], i, val)
|
|
|
|
return ret
|
|
|
|
def delete(self, index):
|
|
del self[index]
|
|
return self
|
|
|
|
def __delitem__(self, key):
|
|
if self._orig_pvector:
|
|
# All structural sharing bets are off, base evolver on _extra_tail only
|
|
l = PythonPVector(self._count, self._shift, self._root, self._tail).tolist()
|
|
l.extend(self._extra_tail)
|
|
self._reset(_EMPTY_PVECTOR)
|
|
self._extra_tail = l
|
|
|
|
del self._extra_tail[key]
|
|
|
|
def persistent(self):
|
|
result = self._orig_pvector
|
|
if self.is_dirty():
|
|
result = PythonPVector(self._count, self._shift, self._root, self._tail).extend(self._extra_tail)
|
|
self._reset(result)
|
|
|
|
return result
|
|
|
|
def __len__(self):
|
|
return self._count + len(self._extra_tail)
|
|
|
|
def is_dirty(self):
|
|
return bool(self._dirty_nodes or self._extra_tail)
|
|
|
|
def evolver(self):
|
|
return PythonPVector.Evolver(self)
|
|
|
|
def set(self, i, val):
|
|
# This method could be implemented by a call to mset() but doing so would cause
|
|
# a ~5 X performance penalty on PyPy (considered the primary platform for this implementation
|
|
# of PVector) so we're keeping this implementation for now.
|
|
|
|
if not isinstance(i, Integral):
|
|
raise TypeError("'%s' object cannot be interpreted as an index" % type(i).__name__)
|
|
|
|
if i < 0:
|
|
i += self._count
|
|
|
|
if 0 <= i < self._count:
|
|
if i >= self._tail_offset:
|
|
new_tail = list(self._tail)
|
|
new_tail[i & BIT_MASK] = val
|
|
return PythonPVector(self._count, self._shift, self._root, new_tail)
|
|
|
|
return PythonPVector(self._count, self._shift, self._do_set(self._shift, self._root, i, val), self._tail)
|
|
|
|
if i == self._count:
|
|
return self.append(val)
|
|
|
|
raise IndexError("Index out of range: %s" % (i,))
|
|
|
|
def _do_set(self, level, node, i, val):
|
|
ret = list(node)
|
|
if level == 0:
|
|
ret[i & BIT_MASK] = val
|
|
else:
|
|
sub_index = (i >> level) & BIT_MASK # >>>
|
|
ret[sub_index] = self._do_set(level - SHIFT, node[sub_index], i, val)
|
|
|
|
return ret
|
|
|
|
@staticmethod
|
|
def _node_for(pvector_like, i):
|
|
if 0 <= i < pvector_like._count:
|
|
if i >= pvector_like._tail_offset:
|
|
return pvector_like._tail
|
|
|
|
node = pvector_like._root
|
|
for level in range(pvector_like._shift, 0, -SHIFT):
|
|
node = node[(i >> level) & BIT_MASK] # >>>
|
|
|
|
return node
|
|
|
|
raise IndexError("Index out of range: %s" % (i,))
|
|
|
|
def _create_new_root(self):
|
|
new_shift = self._shift
|
|
|
|
# Overflow root?
|
|
if (self._count >> SHIFT) > (1 << self._shift): # >>>
|
|
new_root = [self._root, self._new_path(self._shift, self._tail)]
|
|
new_shift += SHIFT
|
|
else:
|
|
new_root = self._push_tail(self._shift, self._root, self._tail)
|
|
|
|
return new_root, new_shift
|
|
|
|
def append(self, val):
|
|
if len(self._tail) < BRANCH_FACTOR:
|
|
new_tail = list(self._tail)
|
|
new_tail.append(val)
|
|
return PythonPVector(self._count + 1, self._shift, self._root, new_tail)
|
|
|
|
# Full tail, push into tree
|
|
new_root, new_shift = self._create_new_root()
|
|
return PythonPVector(self._count + 1, new_shift, new_root, [val])
|
|
|
|
def _new_path(self, level, node):
|
|
if level == 0:
|
|
return node
|
|
|
|
return [self._new_path(level - SHIFT, node)]
|
|
|
|
def _mutating_insert_tail(self):
|
|
self._root, self._shift = self._create_new_root()
|
|
self._tail = []
|
|
|
|
def _mutating_fill_tail(self, offset, sequence):
|
|
max_delta_len = BRANCH_FACTOR - len(self._tail)
|
|
delta = sequence[offset:offset + max_delta_len]
|
|
self._tail.extend(delta)
|
|
delta_len = len(delta)
|
|
self._count += delta_len
|
|
return offset + delta_len
|
|
|
|
def _mutating_extend(self, sequence):
|
|
offset = 0
|
|
sequence_len = len(sequence)
|
|
while offset < sequence_len:
|
|
offset = self._mutating_fill_tail(offset, sequence)
|
|
if len(self._tail) == BRANCH_FACTOR:
|
|
self._mutating_insert_tail()
|
|
|
|
self._tail_offset = self._count - len(self._tail)
|
|
|
|
def extend(self, obj):
|
|
# Mutates the new vector directly for efficiency but that's only an
|
|
# implementation detail, once it is returned it should be considered immutable
|
|
l = obj.tolist() if isinstance(obj, PythonPVector) else list(obj)
|
|
if l:
|
|
new_vector = self.append(l[0])
|
|
new_vector._mutating_extend(l[1:])
|
|
return new_vector
|
|
|
|
return self
|
|
|
|
def _push_tail(self, level, parent, tail_node):
|
|
"""
|
|
if parent is leaf, insert node,
|
|
else does it map to an existing child? ->
|
|
node_to_insert = push node one more level
|
|
else alloc new path
|
|
|
|
return node_to_insert placed in copy of parent
|
|
"""
|
|
ret = list(parent)
|
|
|
|
if level == SHIFT:
|
|
ret.append(tail_node)
|
|
return ret
|
|
|
|
sub_index = ((self._count - 1) >> level) & BIT_MASK # >>>
|
|
if len(parent) > sub_index:
|
|
ret[sub_index] = self._push_tail(level - SHIFT, parent[sub_index], tail_node)
|
|
return ret
|
|
|
|
ret.append(self._new_path(level - SHIFT, tail_node))
|
|
return ret
|
|
|
|
def index(self, value, *args, **kwargs):
|
|
return self.tolist().index(value, *args, **kwargs)
|
|
|
|
def count(self, value):
|
|
return self.tolist().count(value)
|
|
|
|
def delete(self, index, stop=None):
|
|
l = self.tolist()
|
|
del l[_index_or_slice(index, stop)]
|
|
return _EMPTY_PVECTOR.extend(l)
|
|
|
|
def remove(self, value):
|
|
l = self.tolist()
|
|
l.remove(value)
|
|
return _EMPTY_PVECTOR.extend(l)
|
|
|
|
@six.add_metaclass(ABCMeta)
|
|
class PVector(object):
|
|
"""
|
|
Persistent vector implementation. Meant as a replacement for the cases where you would normally
|
|
use a Python list.
|
|
|
|
Do not instantiate directly, instead use the factory functions :py:func:`v` and :py:func:`pvector` to
|
|
create an instance.
|
|
|
|
Heavily influenced by the persistent vector available in Clojure. Initially this was more or
|
|
less just a port of the Java code for the Clojure vector. It has since been modified and to
|
|
some extent optimized for usage in Python.
|
|
|
|
The vector is organized as a trie, any mutating method will return a new vector that contains the changes. No
|
|
updates are done to the original vector. Structural sharing between vectors are applied where possible to save
|
|
space and to avoid making complete copies.
|
|
|
|
This structure corresponds most closely to the built in list type and is intended as a replacement. Where the
|
|
semantics are the same (more or less) the same function names have been used but for some cases it is not possible,
|
|
for example assignments.
|
|
|
|
The PVector implements the Sequence protocol and is Hashable.
|
|
|
|
Inserts are amortized O(1). Random access is log32(n) where n is the size of the vector.
|
|
|
|
The following are examples of some common operations on persistent vectors:
|
|
|
|
>>> p = v(1, 2, 3)
|
|
>>> p2 = p.append(4)
|
|
>>> p3 = p2.extend([5, 6, 7])
|
|
>>> p
|
|
pvector([1, 2, 3])
|
|
>>> p2
|
|
pvector([1, 2, 3, 4])
|
|
>>> p3
|
|
pvector([1, 2, 3, 4, 5, 6, 7])
|
|
>>> p3[5]
|
|
6
|
|
>>> p.set(1, 99)
|
|
pvector([1, 99, 3])
|
|
>>>
|
|
"""
|
|
|
|
@abstractmethod
|
|
def __len__(self):
|
|
"""
|
|
>>> len(v(1, 2, 3))
|
|
3
|
|
"""
|
|
|
|
@abstractmethod
|
|
def __getitem__(self, index):
|
|
"""
|
|
Get value at index. Full slicing support.
|
|
|
|
>>> v1 = v(5, 6, 7, 8)
|
|
>>> v1[2]
|
|
7
|
|
>>> v1[1:3]
|
|
pvector([6, 7])
|
|
"""
|
|
|
|
@abstractmethod
|
|
def __add__(self, other):
|
|
"""
|
|
>>> v1 = v(1, 2)
|
|
>>> v2 = v(3, 4)
|
|
>>> v1 + v2
|
|
pvector([1, 2, 3, 4])
|
|
"""
|
|
|
|
@abstractmethod
|
|
def __mul__(self, times):
|
|
"""
|
|
>>> v1 = v(1, 2)
|
|
>>> 3 * v1
|
|
pvector([1, 2, 1, 2, 1, 2])
|
|
"""
|
|
|
|
@abstractmethod
|
|
def __hash__(self):
|
|
"""
|
|
>>> v1 = v(1, 2, 3)
|
|
>>> v2 = v(1, 2, 3)
|
|
>>> hash(v1) == hash(v2)
|
|
True
|
|
"""
|
|
|
|
@abstractmethod
|
|
def evolver(self):
|
|
"""
|
|
Create a new evolver for this pvector. The evolver acts as a mutable view of the vector
|
|
with "transaction like" semantics. No part of the underlying vector i updated, it is still
|
|
fully immutable. Furthermore multiple evolvers created from the same pvector do not
|
|
interfere with each other.
|
|
|
|
You may want to use an evolver instead of working directly with the pvector in the
|
|
following cases:
|
|
|
|
* Multiple updates are done to the same vector and the intermediate results are of no
|
|
interest. In this case using an evolver may be a more efficient and easier to work with.
|
|
* You need to pass a vector into a legacy function or a function that you have no control
|
|
over which performs in place mutations of lists. In this case pass an evolver instance
|
|
instead and then create a new pvector from the evolver once the function returns.
|
|
|
|
The following example illustrates a typical workflow when working with evolvers. It also
|
|
displays most of the API (which i kept small by design, you should not be tempted to
|
|
use evolvers in excess ;-)).
|
|
|
|
Create the evolver and perform various mutating updates to it:
|
|
|
|
>>> v1 = v(1, 2, 3, 4, 5)
|
|
>>> e = v1.evolver()
|
|
>>> e[1] = 22
|
|
>>> _ = e.append(6)
|
|
>>> _ = e.extend([7, 8, 9])
|
|
>>> e[8] += 1
|
|
>>> len(e)
|
|
9
|
|
|
|
The underlying pvector remains the same:
|
|
|
|
>>> v1
|
|
pvector([1, 2, 3, 4, 5])
|
|
|
|
The changes are kept in the evolver. An updated pvector can be created using the
|
|
persistent() function on the evolver.
|
|
|
|
>>> v2 = e.persistent()
|
|
>>> v2
|
|
pvector([1, 22, 3, 4, 5, 6, 7, 8, 10])
|
|
|
|
The new pvector will share data with the original pvector in the same way that would have
|
|
been done if only using operations on the pvector.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def mset(self, *args):
|
|
"""
|
|
Return a new vector with elements in specified positions replaced by values (multi set).
|
|
|
|
Elements on even positions in the argument list are interpreted as indexes while
|
|
elements on odd positions are considered values.
|
|
|
|
>>> v1 = v(1, 2, 3)
|
|
>>> v1.mset(0, 11, 2, 33)
|
|
pvector([11, 2, 33])
|
|
"""
|
|
|
|
@abstractmethod
|
|
def set(self, i, val):
|
|
"""
|
|
Return a new vector with element at position i replaced with val. The original vector remains unchanged.
|
|
|
|
Setting a value one step beyond the end of the vector is equal to appending. Setting beyond that will
|
|
result in an IndexError.
|
|
|
|
>>> v1 = v(1, 2, 3)
|
|
>>> v1.set(1, 4)
|
|
pvector([1, 4, 3])
|
|
>>> v1.set(3, 4)
|
|
pvector([1, 2, 3, 4])
|
|
>>> v1.set(-1, 4)
|
|
pvector([1, 2, 4])
|
|
"""
|
|
|
|
@abstractmethod
|
|
def append(self, val):
|
|
"""
|
|
Return a new vector with val appended.
|
|
|
|
>>> v1 = v(1, 2)
|
|
>>> v1.append(3)
|
|
pvector([1, 2, 3])
|
|
"""
|
|
|
|
@abstractmethod
|
|
def extend(self, obj):
|
|
"""
|
|
Return a new vector with all values in obj appended to it. Obj may be another
|
|
PVector or any other Iterable.
|
|
|
|
>>> v1 = v(1, 2, 3)
|
|
>>> v1.extend([4, 5])
|
|
pvector([1, 2, 3, 4, 5])
|
|
"""
|
|
|
|
@abstractmethod
|
|
def index(self, value, *args, **kwargs):
|
|
"""
|
|
Return first index of value. Additional indexes may be supplied to limit the search to a
|
|
sub range of the vector.
|
|
|
|
>>> v1 = v(1, 2, 3, 4, 3)
|
|
>>> v1.index(3)
|
|
2
|
|
>>> v1.index(3, 3, 5)
|
|
4
|
|
"""
|
|
|
|
@abstractmethod
|
|
def count(self, value):
|
|
"""
|
|
Return the number of times that value appears in the vector.
|
|
|
|
>>> v1 = v(1, 4, 3, 4)
|
|
>>> v1.count(4)
|
|
2
|
|
"""
|
|
|
|
@abstractmethod
|
|
def transform(self, *transformations):
|
|
"""
|
|
Transform arbitrarily complex combinations of PVectors and PMaps. A transformation
|
|
consists of two parts. One match expression that specifies which elements to transform
|
|
and one transformation function that performs the actual transformation.
|
|
|
|
>>> from pyrsistent import freeze, ny
|
|
>>> news_paper = freeze({'articles': [{'author': 'Sara', 'content': 'A short article'},
|
|
... {'author': 'Steve', 'content': 'A slightly longer article'}],
|
|
... 'weather': {'temperature': '11C', 'wind': '5m/s'}})
|
|
>>> short_news = news_paper.transform(['articles', ny, 'content'], lambda c: c[:25] + '...' if len(c) > 25 else c)
|
|
>>> very_short_news = news_paper.transform(['articles', ny, 'content'], lambda c: c[:15] + '...' if len(c) > 15 else c)
|
|
>>> very_short_news.articles[0].content
|
|
'A short article'
|
|
>>> very_short_news.articles[1].content
|
|
'A slightly long...'
|
|
|
|
When nothing has been transformed the original data structure is kept
|
|
|
|
>>> short_news is news_paper
|
|
True
|
|
>>> very_short_news is news_paper
|
|
False
|
|
>>> very_short_news.articles[0] is news_paper.articles[0]
|
|
True
|
|
"""
|
|
|
|
@abstractmethod
|
|
def delete(self, index, stop=None):
|
|
"""
|
|
Delete a portion of the vector by index or range.
|
|
|
|
>>> v1 = v(1, 2, 3, 4, 5)
|
|
>>> v1.delete(1)
|
|
pvector([1, 3, 4, 5])
|
|
>>> v1.delete(1, 3)
|
|
pvector([1, 4, 5])
|
|
"""
|
|
|
|
@abstractmethod
|
|
def remove(self, value):
|
|
"""
|
|
Remove the first occurrence of a value from the vector.
|
|
|
|
>>> v1 = v(1, 2, 3, 2, 1)
|
|
>>> v2 = v1.remove(1)
|
|
>>> v2
|
|
pvector([2, 3, 2, 1])
|
|
>>> v2.remove(1)
|
|
pvector([2, 3, 2])
|
|
"""
|
|
|
|
|
|
_EMPTY_PVECTOR = PythonPVector(0, SHIFT, [], [])
|
|
PVector.register(PythonPVector)
|
|
Sequence.register(PVector)
|
|
Hashable.register(PVector)
|
|
|
|
def python_pvector(iterable=()):
|
|
"""
|
|
Create a new persistent vector containing the elements in iterable.
|
|
|
|
>>> v1 = pvector([1, 2, 3])
|
|
>>> v1
|
|
pvector([1, 2, 3])
|
|
"""
|
|
return _EMPTY_PVECTOR.extend(iterable)
|
|
|
|
try:
|
|
# Use the C extension as underlying trie implementation if it is available
|
|
import os
|
|
if os.environ.get('PYRSISTENT_NO_C_EXTENSION'):
|
|
pvector = python_pvector
|
|
else:
|
|
from pvectorc import pvector
|
|
PVector.register(type(pvector()))
|
|
except ImportError:
|
|
pvector = python_pvector
|
|
|
|
|
|
def v(*elements):
|
|
"""
|
|
Create a new persistent vector containing all parameters to this function.
|
|
|
|
>>> v1 = v(1, 2, 3)
|
|
>>> v1
|
|
pvector([1, 2, 3])
|
|
"""
|
|
return pvector(elements)
|