ansible-later/env_27/lib/python2.7/site-packages/coverage/results.py
Robert Kaussow 10aaa8e7e3 fix pytest
2019-04-11 15:56:20 +02:00

290 lines
10 KiB
Python

# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0
# For details: https://bitbucket.org/ned/coveragepy/src/default/NOTICE.txt
"""Results of coverage measurement."""
import collections
from coverage.backward import iitems
from coverage.misc import contract, format_lines, SimpleRepr
class Analysis(object):
"""The results of analyzing a FileReporter."""
def __init__(self, data, file_reporter):
self.data = data
self.file_reporter = file_reporter
self.filename = self.file_reporter.filename
self.statements = self.file_reporter.lines()
self.excluded = self.file_reporter.excluded_lines()
# Identify missing statements.
executed = self.data.lines(self.filename) or []
executed = self.file_reporter.translate_lines(executed)
self.missing = self.statements - executed
if self.data.has_arcs():
self._arc_possibilities = sorted(self.file_reporter.arcs())
self.exit_counts = self.file_reporter.exit_counts()
self.no_branch = self.file_reporter.no_branch_lines()
n_branches = self.total_branches()
mba = self.missing_branch_arcs()
n_partial_branches = sum(len(v) for k,v in iitems(mba) if k not in self.missing)
n_missing_branches = sum(len(v) for k,v in iitems(mba))
else:
self._arc_possibilities = []
self.exit_counts = {}
self.no_branch = set()
n_branches = n_partial_branches = n_missing_branches = 0
self.numbers = Numbers(
n_files=1,
n_statements=len(self.statements),
n_excluded=len(self.excluded),
n_missing=len(self.missing),
n_branches=n_branches,
n_partial_branches=n_partial_branches,
n_missing_branches=n_missing_branches,
)
def missing_formatted(self):
"""The missing line numbers, formatted nicely.
Returns a string like "1-2, 5-11, 13-14".
"""
return format_lines(self.statements, self.missing)
def has_arcs(self):
"""Were arcs measured in this result?"""
return self.data.has_arcs()
def arc_possibilities(self):
"""Returns a sorted list of the arcs in the code."""
return self._arc_possibilities
def arcs_executed(self):
"""Returns a sorted list of the arcs actually executed in the code."""
executed = self.data.arcs(self.filename) or []
executed = self.file_reporter.translate_arcs(executed)
return sorted(executed)
def arcs_missing(self):
"""Returns a sorted list of the arcs in the code not executed."""
possible = self.arc_possibilities()
executed = self.arcs_executed()
missing = (
p for p in possible
if p not in executed
and p[0] not in self.no_branch
)
return sorted(missing)
def arcs_missing_formatted(self):
"""The missing branch arcs, formatted nicely.
Returns a string like "1->2, 1->3, 16->20". Omits any mention of
branches from missing lines, so if line 17 is missing, then 17->18
won't be included.
"""
arcs = self.missing_branch_arcs()
missing = self.missing
line_exits = sorted(iitems(arcs))
pairs = []
for line, exits in line_exits:
for ex in sorted(exits):
if line not in missing:
pairs.append("%d->%s" % (line, (ex if ex > 0 else "exit")))
return ', '.join(pairs)
def arcs_unpredicted(self):
"""Returns a sorted list of the executed arcs missing from the code."""
possible = self.arc_possibilities()
executed = self.arcs_executed()
# Exclude arcs here which connect a line to itself. They can occur
# in executed data in some cases. This is where they can cause
# trouble, and here is where it's the least burden to remove them.
# Also, generators can somehow cause arcs from "enter" to "exit", so
# make sure we have at least one positive value.
unpredicted = (
e for e in executed
if e not in possible
and e[0] != e[1]
and (e[0] > 0 or e[1] > 0)
)
return sorted(unpredicted)
def branch_lines(self):
"""Returns a list of line numbers that have more than one exit."""
return [l1 for l1,count in iitems(self.exit_counts) if count > 1]
def total_branches(self):
"""How many total branches are there?"""
return sum(count for count in self.exit_counts.values() if count > 1)
def missing_branch_arcs(self):
"""Return arcs that weren't executed from branch lines.
Returns {l1:[l2a,l2b,...], ...}
"""
missing = self.arcs_missing()
branch_lines = set(self.branch_lines())
mba = collections.defaultdict(list)
for l1, l2 in missing:
if l1 in branch_lines:
mba[l1].append(l2)
return mba
def branch_stats(self):
"""Get stats about branches.
Returns a dict mapping line numbers to a tuple:
(total_exits, taken_exits).
"""
missing_arcs = self.missing_branch_arcs()
stats = {}
for lnum in self.branch_lines():
exits = self.exit_counts[lnum]
try:
missing = len(missing_arcs[lnum])
except KeyError:
missing = 0
stats[lnum] = (exits, exits - missing)
return stats
class Numbers(SimpleRepr):
"""The numerical results of measuring coverage.
This holds the basic statistics from `Analysis`, and is used to roll
up statistics across files.
"""
# A global to determine the precision on coverage percentages, the number
# of decimal places.
_precision = 0
_near0 = 1.0 # These will change when _precision is changed.
_near100 = 99.0
def __init__(self, n_files=0, n_statements=0, n_excluded=0, n_missing=0,
n_branches=0, n_partial_branches=0, n_missing_branches=0
):
self.n_files = n_files
self.n_statements = n_statements
self.n_excluded = n_excluded
self.n_missing = n_missing
self.n_branches = n_branches
self.n_partial_branches = n_partial_branches
self.n_missing_branches = n_missing_branches
def init_args(self):
"""Return a list for __init__(*args) to recreate this object."""
return [
self.n_files, self.n_statements, self.n_excluded, self.n_missing,
self.n_branches, self.n_partial_branches, self.n_missing_branches,
]
@classmethod
def set_precision(cls, precision):
"""Set the number of decimal places used to report percentages."""
assert 0 <= precision < 10
cls._precision = precision
cls._near0 = 1.0 / 10**precision
cls._near100 = 100.0 - cls._near0
@property
def n_executed(self):
"""Returns the number of executed statements."""
return self.n_statements - self.n_missing
@property
def n_executed_branches(self):
"""Returns the number of executed branches."""
return self.n_branches - self.n_missing_branches
@property
def pc_covered(self):
"""Returns a single percentage value for coverage."""
if self.n_statements > 0:
numerator, denominator = self.ratio_covered
pc_cov = (100.0 * numerator) / denominator
else:
pc_cov = 100.0
return pc_cov
@property
def pc_covered_str(self):
"""Returns the percent covered, as a string, without a percent sign.
Note that "0" is only returned when the value is truly zero, and "100"
is only returned when the value is truly 100. Rounding can never
result in either "0" or "100".
"""
pc = self.pc_covered
if 0 < pc < self._near0:
pc = self._near0
elif self._near100 < pc < 100:
pc = self._near100
else:
pc = round(pc, self._precision)
return "%.*f" % (self._precision, pc)
@classmethod
def pc_str_width(cls):
"""How many characters wide can pc_covered_str be?"""
width = 3 # "100"
if cls._precision > 0:
width += 1 + cls._precision
return width
@property
def ratio_covered(self):
"""Return a numerator and denominator for the coverage ratio."""
numerator = self.n_executed + self.n_executed_branches
denominator = self.n_statements + self.n_branches
return numerator, denominator
def __add__(self, other):
nums = Numbers()
nums.n_files = self.n_files + other.n_files
nums.n_statements = self.n_statements + other.n_statements
nums.n_excluded = self.n_excluded + other.n_excluded
nums.n_missing = self.n_missing + other.n_missing
nums.n_branches = self.n_branches + other.n_branches
nums.n_partial_branches = (
self.n_partial_branches + other.n_partial_branches
)
nums.n_missing_branches = (
self.n_missing_branches + other.n_missing_branches
)
return nums
def __radd__(self, other):
# Implementing 0+Numbers allows us to sum() a list of Numbers.
if other == 0:
return self
return NotImplemented
@contract(total='number', fail_under='number', precision=int, returns=bool)
def should_fail_under(total, fail_under, precision):
"""Determine if a total should fail due to fail-under.
`total` is a float, the coverage measurement total. `fail_under` is the
fail_under setting to compare with. `precision` is the number of digits
to consider after the decimal point.
Returns True if the total should fail.
"""
# Special case for fail_under=100, it must really be 100.
if fail_under == 100.0 and total != 100.0:
return True
return round(total, precision) < fail_under